Identifying type 1 and type 2 diabetic cases using administrative data: a tree-structured model.

نویسندگان

  • Weihsuan Lo-Ciganic
  • Janice C Zgibor
  • Kristine Ruppert
  • Vincent C Arena
  • Roslyn A Stone
چکیده

BACKGROUND To date, few administrative diabetes mellitus (DM) registries have distinguished type 1 diabetes mellitus (T1DM) from type 2 diabetes mellitus (T2DM). OBJECTIVE Using a classification tree model, a prediction rule was developed to distinguish T1DM from T2DM in a large administrative database. METHODS The Medical Archival Retrieval System at the University of Pittsburgh Medical Center included administrative and clinical data from January 1, 2000, through September 30, 2009, for 209,647 DM patients aged ≥18 years. Probable cases (8,173 T1DM and 125,111 T2DM) were identified by applying clinical criteria to administrative data. Nonparametric classification tree models were fit using TIBCO Spotfire S+ 8.1 (TIBCO Software), with model size based on 10-fold cross validation. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of T1DM were estimated. RESULTS The main predictors that distinguished T1DM from T2DM are age <40 years; International Classification of Disease, 9th revision, codes of T1DM or T2DM diagnosis; inpatient oral hypoglycemic agent use; inpatient insulin use; and episode(s) of diabetic ketoacidosis diagnosis. Compared with a complex clinical algorithm, the tree-structured model to predict T1DM had 92.8% sensitivity, 99.3% specificity, 89.5% PPV, and 99.5% NPV. CONCLUSION The preliminary predictive rule appears to be promising. Being able to distinguish between DM subtypes in administrative databases will allow large-scale subtype-specific analyses of medical care costs, morbidity, and mortality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of encrypted traffic for applications based on statistical features

Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...

متن کامل

Designing an intelligent system for diagnosing type 2 diabetes using the data mining approach: brief report

Background: Diabetes mellitus has several complications. The Late diagnosis of diabetes in people leads to the spread of complications. Therefore, this study has been done to determine the possibility of predicting diabetes type 2 by using data mining techniques. Methods: This is a descriptive-analytic study that was conducted as a cross-sectional study. The study population included people re...

متن کامل

Comparing Three Data Mining Algorithms for Identifying the Associated Risk Factors of Type 2 Diabetes

Background: Increasing the prevalence of type 2 diabetes has given rise to a global health burden and a concern among health service providers and health administrators. The current study aimed at developing and comparing some statistical models to identify the risk factors associated with type 2 diabetes. In this light, artificial neural network (ANN), support vector machines (SVMs), and multi...

متن کامل

Application of Survival Tree Model in Determining Affecting Factors in Breastfeeding Duration

Background and Purpose: Survival tree model is a nonparametric method which can be used to identify the affecting factors from a specific time to the onset of an event. In this method, the categories are selected according to the most important factors. The purpose of this study was to determine the factors affecting the duration of breastfeeding in mothers and introduce the homogeneous subgrou...

متن کامل

استخراج دانش از داده های بیماران دیابتی با استفاده از روش درخت تصمیم C5.0

Introduction: In the last 10 years The incidence of diabetes has doubled worldwide with annual increasing rate of about 6%. More than 2 million people in Iran are now affected by this disease. The present research deals with the relation between the observed complications of type 2 diabetic patients and some related features like Blood Glucose Level, Blood Pressure, Age, and Family History. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of diabetes science and technology

دوره 5 3  شماره 

صفحات  -

تاریخ انتشار 2011